
draft
From Indexing the Biomedical Literature to Coding Clinical Text: 

Experience with MTI and Machine Learning Approaches 

Alan R. Aronson1, Olivier Bodenreider1, Dina Demner-Fushman1, Kin Wah Fung1,  
Vivian K. Lee1,2, James G. Mork1, Aurélie Névéol1, Lee Peters1, Willie J. Rogers1

1Lister Hill Center 
National Library of Medicine 

Bethesda, MD 20894 
{alan, olivier, demnerd, 
kwfung, mork, neveola,  

peters, wrogers} 
@nlm.nih.gov 

 
2Vanderbilt University 
Nashville, TN 37235 

vivian.lee@vanderbilt.edu 

 
 

Abstract 

This paper describes the application of an 
ensemble of indexing and classification 
systems, which have been shown to be suc-
cessful in information retrieval and classi-
fication of medical literature, to a new task 
of assigning ICD-9-CM codes to the clini-
cal history and impression sections of radi-
ology reports. The basic methods used are: 
a modification of the NLM Medical Text 
Indexer system, SVM, k-NN and a simple 
pattern-matching method. The basic meth-
ods are combined using a variant of stack-
ing. Evaluated in the context of a Medical 
NLP Challenge, fusion produced an F-
score of 0.85 on the Challenge test set, 
which is considerably above the mean 
Challenge F-score of 0.77 for 44 participat-
ing groups. 

1 Introduction 

Researchers at the National Library of Medicine 
(NLM) have developed the Medical Text Indexer 
(MTI) for the automatic indexing of the biomedical 
literature (Aronson et al., 2004). The unsupervised 
methods within MTI were later successfully com-
bined with machine learning techniques and ap-
plied to the classification tasks in the Genomics 
Track evaluations at the Text Retrieval Conference 
(TREC) (Aronson et al., 2005 and Demner-
Fushman et al., 2006). This fusion approach con-

sists of using several basic classification methods 
with complementary strengths, combining the re-
sults using a modified ensemble method based on 
stacking (Ting and Witten, 1997). 

While these methods have shown reasonable 
performance on indexing and retrieval tasks of 
biomedical articles, it remains to be determined 
how they would perform on a different biomedical 
corpus (e.g., clinical text) and on a different task 
(e.g., coding to a different controlled vocabulary). 
However, except for competitive evaluations such 
as TREC or BioCreAtIvE, corpora and gold stan-
dards for such tasks are generally not available, 
which is a limiting factor for such studies. For a 
survey of currently available corpora and devel-
opments in biomedical language processing, see 
Hunter and Cohen, 2006. 

The Medical NLP Challenge 1  sponsored by a 
number of groups including the Computational 
Medicine Center (CMC) at the Cincinnati Chil-
dren’s Hospital Medical Center gave us the oppor-
tunity to apply our fusion approach to a clinical 
corpus. The Challenge was to assign ICD-9-CM 
codes (International Classification of Diseases, 9th 
Revision, Clinical Modification) 2  to clinical text 
consisting of anonymized clinical history and im-
pression sections of radiology reports. 

The Medical NLP Challenge organizers distrib-
uted a training corpus of almost 1,000 of the ano-
nymized, abbreviated radiology reports along with 

                                                 
1 See www.computationalmedicine.org/challenge/.
2 See www.cdc.gov/nchs/icd9.htm.
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gold standard ICD-9-CM assignments for each 
report obtained via a consensus of three independ-
ent sets of assignments. The primary measure for 
the Challenge was defined as the balanced F-score, 
with a secondary measure being cost-sensitive ac-
curacy. These measures were computed for sub-
missions to the Challenge based on a test corpus 
similar in size to the training corpus but distributed 
without gold standard code assignments. 

The main objective of this study is to determine 
what adaptation of the original methods is required 
to code clinical text with ICD-9-CM, in contrast to 
indexing and retrieving MEDLINE®. Note that an 
earlier study (Gay et al., 2005) showed that only 
minor adaptations were required in extending the 
original model to full-text biomedical articles. A 
secondary objective is to evaluate the performance 
of our methods in this new setting. 

 

2 Methods 

In early experimentation with the training corpus 
provided by the Challenge organizers, we discov-
ered that several of the training cases involved ne-
gated assertions in the text and that deleting these 
improved the performance of all basic methods 
being tested. For example, “no pneumonia” occurs 
many times in the impression section of a report, 
sometimes with additional context. Section 2.1 
describes the process we used to remove these ne-
gated expressions; section 2.2 consists of descrip-
tions of the four basic methods used in this study; 
and section 2.3 defines the fusion of the basic 
methods to form a final result. 

2.1 Document Preparation 

The NegEx program (Chapman et al., 2001a and 
2001b, and Goldin and Chapman, 2003), which 
discovers negated expressions in text, was used to 
find negated expressions in the training and test 
corpora using a dictionary generated from concepts 
from the 2006AD version of the UMLS® Metathe-
saurus® (excluding the AMA vocabularies). A ta-
ble containing the concept unique identifier (CUI) 
and English string (STR with LAT=‘ENG’) was 
extracted from the main concept table, MRCON, 
and was used as input to NegEx to generate a dic-
tionary that was later used as the universe of ex-
pressions which NegEx could find to be negated in 

the target corpora. (See the Appendix for examples 
of the input and output to this process.) 

The XML text of the training and test corpora 
was converted to a tree representation and then 
traversed, operating on one radiology report at a 
time. The clinical history and impression sections 
of each report were tokenized to allow whitespace 
to be separated from the punctuation, numbers and 
alphabetic text. The concepts from the UMLS were 
tokenized in the same way, to allow the concepts 
found by NegEx to be aligned with the text. The 
negation phrases discovered by NegEx were also 
tokenized to find the appropriate negation phrase 
preceding or trailing the target concept. Using the 
location information obtained by matching the set 
of one or more target concepts and the associated 
negation phrase, the overlapping concept spans 
were merged and the span for the negation phrase 
and the outermost negated concept was removed. 
Any intervening concepts associated with the same 
negation phrase were removed, too. The abbrevi-
ated tree representation was then re-serialized back 
into XML. 

As an example of our use of NegEx, consider 
the report with clinical history “13-year 2-month - 
old female evaluate for cough.” and impression 
“No focal pneumonia.” After removal of negated 
text, the clinical history becomes “13-year 2-month 
- old female”, and the discussion is empty. 

2.2 Basic Methods 

The four basic methods used for the Medical NLP 
Challenge are MTI (a modification of NLM’s 
Medical Text Indexer system), SVM (Support 
Vector Machines), k-NN (k Nearest Neighbors) 
and Pattern Matching (a simple, pattern-based clas-
sifier). Each of these methods is described here. 
Note that the MTI method uses a “Restrict to ICD-
9-CM” algorithm that is described in the next sec-
tion. 

 
MTI. The original Medical Text Indexer (MTI) 

system, shown in Figure 1, consists of an infra-
structure for applying alternative methods of dis-
covering MeSH® headings for citation titles and 
abstracts and then combining them into an ordered 
list of recommended indexing terms. The top por-
tion of the diagram consists of two paths, or meth-
ods, for creating a list of recommended indexing 
terms: MetaMap Indexing and PubMed® Related 
Citations. The MetaMap Indexing path actually 
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computes UMLS Metathesaurus concepts, which 
are passed to the Restrict to MeSH process 
(Bodenreider et al., 1998). The results from each 
path are weighted and combined using Post-
Processing, which also refines the results to con-
form to NLM indexing policy. The system is 
highly parameterized not only by path weights but 
also by several parameters specific to the Restrict 
to MeSH and Post-Processing processes. 

 

 
 
Figure 1: Medical Text Indexer (MTI) System 

 
For use in the Challenge, the Medical Text In-

dexer (MTI) program itself required few adapta-
tions.  Most of the changes involved the environ-
ment from which MTI obtains the data it uses 
without changing the normal parameter settings. 
We also added a further post-processing compo-
nent to filter our results. 

For the environment, we replaced MTI’s normal 
“Restrict to MeSH” algorithm with a “Restrict to 
ICD-9-CM” algorithm, described below, in order 
to map UMLS concepts to ICD-9-CM codes in-
stead of MeSH headings. We also trained the Pub-
Med Related Citations component, TexTool (Ta-
nabe and Wilbur, 2002), on the Medical NLP Chal-

lenge training data instead of the entire MED-
LINE/PubMed database as is the case for normal 
MTI use at NLM.  For both of these methods, we 
used the actual ICD-9-CM codes to mimic UMLS 
CUIs used internally by MTI. 

To create the new training data for the TexTool 
(Related Citations), we reformatted the Medical 
NLP Challenge training data into a pseudo-
MEDLINE format using the “doc id” component 
as the PMID, the “CLINICAL_HISTORY” text 
component for the Title, the “IMPRESSION” text 
component for the Abstract, and all of the 
“CMC_MAJORITY” codes as MeSH Headings 
(see Figure 2).  This provided us with direct ICD-
9-CM codes to work with instead of MeSH Head-
ings. 
 
<doc id="97663756" type="RADIOLOGY_REPORT"> 
  <codes> 
    <code origin="CMC_MAJORITY" type="ICD-9-
CM">780.6</code> 
    <code origin="CMC_MAJORITY" type="ICD-9-
CM">786.2</code> 
    <code origin="COMPANY3" type="ICD-9-
CM">786.2</code> 
    <code origin="COMPANY1" type="ICD-9-
CM">780.6</code> 
    <code origin="COMPANY1" type="ICD-9-
CM">786.2</code> 
    <code origin="COMPANY2" type="ICD-9-
CM">780.6</code> 
    <code origin="COMPANY2" type="ICD-9-
CM">786.2</code> 
  </codes> 
  <texts> 
    <text origin="CCHMC_RADIOLOGY" 
type="CLINICAL_HISTORY">Cough and fever.</text> 
    <text origin="CCHMC_RADIOLOGY" 
type="IMPRESSION">Normal radiographic appear-
ance of the chest, no pneumonia.</text> 
  </texts> 
</doc> 
PMID- 97663756 
TI  - Cough and fever. 
AB  - Normal radiographic appearance of the 
chest, no pneumonia. 
MH  - Fever (780.6) 
MH  - Cough (786.2) 

 
Figure 2: XML Medical NLP Training Data modi-

fied to pseudo-ASCII MEDLINE format 
 

Within MTI we also utilized an experimental 
option for MetaMap (Composite Phrases), which 
provides a longer UMLS concept match than usual. 
We did not use the following: (1) UMLS concept-
specific checking and exclusion sections; and (2) 
the MeSH Subheading generation, checking, and 
removal elements, since they were not needed for 
this Challenge. We then had MTI use the new Re-
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strict to ICD-9-CM file and the new TexTool to 
generate its results. 

 
Restrict to ICD-9-CM. The mapping of every 

UMLS concept to ICD-9-CM developed for the 
Medical NLP Challenge is an adaptation of the 
original mapping to MeSH, later generalized to any 
target vocabulary (Fung and Bodenreider, 2005). 
Based on the UMLS Metathesaurus, the mapping 
utilizes four increasingly aggressive techniques: 
synonymy, built-in mappings, hierarchical map-
pings and associative mappings. In order to comply 
with coding rules in ICD-9-CM, mappings to non-
leaf codes are later resolved into leaf codes. 

Mappings to ICD-9-CM are identified through 
synonymy when names from ICD-9-CM are in-
cluded in the UMLS concept identified by 
MetaMap. For example, the ICD-9-CM code 592.0 
Calculus of kidney is associated with the UMLS 
concept C0392525 Nephrolithiasis through synon-
ymy. 

Built-in mappings are mapping relations be-
tween UMLS concepts implied from mappings 
provided by source vocabularies in the UMLS. For 
example, the UMLS concept C0239937 Micro-
scopic hematuria is mapped to the concept 
C0018965 (which contains the ICD-9-CM code 
599.7 Hematuria) through a mapping provided by 
SNOMED CT. 

In the absence of a mapping through synonymy 
or built-in mapping, a hierarchical mapping is 
attempted. Starting from the concept identified by 
MetaMap, a graph of ancestors is built by first us-
ing its parent concepts and broader concepts, then 
adding the parent concepts and broader concepts of 
each concept, recursively. Semantic constraints 
(based on semantic types) are applied in order to 
prevent semantic drift. Ancestor concepts closest 
to the MetaMap source concept are selected from 
the graph. Only concepts that can be resolved into 
ICD-9-CM codes (through synonymy or built-in 
mapping) are selected. For example, starting from 
C0239574 Low grade pyrexia, a mapping is found 
to ICD-9-CM code 780.6 Fever, which is con-
tained in the concept C0015967, one of the ances-
tors of C0239574. 

The last attempt to find a mapping involves not 
only hierarchical, but also associative relations. 
Instead of starting from the concept identified by 
MetaMap, associative mappings explore the con-
cepts in associative relation to this concept. For 

example, the concept C1458136 Renal stone sub-
stance is mapped to ICD-9-CM code 592.0 Calcu-
lus of kidney. 

Finally, when the identified ICD-9-CM code 
was not a leaf code (e.g., 786.5 Chest pain), we 
remapped it to one of the corresponding leaf codes 
in the training set where possible (e.g., 786.50 Un-
specified chest pain). 

Of the 2,331 UMLS concepts identified by 
MetaMap in the test set after freezing the method, 
620 (27%) were mapped to ICD-9-CM. More spe-
cifically, 101 concepts were mapped to one of the 
45 target ICD-9-CM codes present in the training 
set. Of the 101 concepts, 40 were mapped through 
synonymy, 11 through built-in mappings, 40 
through hierarchical mapping and 10 through asso-
ciative mapping. 

 
After the main MTI processing was completed, 

we applied a post-processing filter, restricting our 
results to the list of 94 valid combinations of ICD-
9-CM codes provided in the training set (hence-
forth referred to as allowed combinations) and 
slightly emphasizing MetaMap results. Examples 
of the post-processing rules are: 

• If MTI recommended 079.99 (Unspecified 
viral infection in conditions…) via either 
MetaMap or Related Citations, use 079.99, 
493.90 (Asthma, unspecified type…), and 
780.6 (Fever) for indexing. This is the only 
valid combination for this code based on the 
training corpus. 

• Similarly, if MTI recommended “Enlarge-
ment of lymph nodes” (785.6) via the 
MetaMap path with a score greater then 
zero, use 785.6 and 786.2 (Cough) for in-
dexing. 

The best F-score (F = 0.83) for the MTI method 
was obtained on the training set using the negation-
removed text.  This was a slight improvement over 
using the original text (F = 0.82). 

 
SVM. We utilized Yet Another Learning Envi-

ronment3 (YALE), an open source application de-
veloped for machine learning and data mining, to 
determine the data classification performance of 
support vector machine (SVM) learning on the 

                                                 
3 See http://rapid-i.com. 
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training data. To prepare the Challenge data for 
analysis, we removed all stop words and created 
feature vectors for the free text extracted from the 
“CLINICAL_HISTORY” and “IMPRESSION” 
fields of the records.  Since both the training and 
test Challenge data had a known finite number of 
individual ICD-9-CM labels (45) and distinct com-
binations of ICD-9-CM labels (94), the data was 
prepared both as feature vectors for 45 individual 
labels as well as a model with 94 combination la-
bels.  In addition, the feature vectors were created 
using both simple term frequency as well as in-
verse document frequency (IDF) weighting, where 
the weight is (1+log(term frequency))*(total 
documents/document frequency).  There were thus 
a total of four feature vector datasets: 1) 45 indi-
vidual ICD-9-CM labels and simple term fre-
quency, 2) 45 ICD-9-CM labels and IDF weight-
ing, 3) 94 ICD-9-CM combinations and simple 
term frequency, and 4) 94 ICD-9-CM combina-
tions and IDF weighting. 

The YALE tool encompasses a number of SVM 
learners and kernel types.  For the classification 
problem at hand, we chose the C-SVM learner and 
the radial basis function (rbf) kernel.  The C-SVM 
learner attempts to minimize the error function 
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where w is the vector of coefficients, b is a con-
stant, ϕ  is the kernel function, x are the independ-
ent variables, and ξi are parameters for handling 
the inputs.  C > 0 is the penalty parameter of the 
error function.  The rbf kernel is defined as K(x, 
x’) = exp(−γ |x − x’|2), γ > 0 where γ is a kernel 
parameter that determines the rbf width. We ran 
cross-validation experiments using YALE on all 
training datasets and varying C (10, 100, 1000, 
10000) and γ (0.01, 0.001, 0.0001, 0.00001) to de-
termine the optimal C and γ combination.  The 
cross-validation experiments generated classifica-
tion models that were then applied to the complete 
training datasets to analyze the performance of the 
learner. The 94 ICD-9-CM combination and sim-
ple term frequency dataset with C = 10000 and γ = 
0.01 had the best F-score at 0.86.  The best F-score 
for the 94 ICD-9-CM combination and IDF weight 
dataset was 0.79, where C = 0.001 and γ = 10000.   

Further preprocessing the training dataset by 
removing negated expressions was found to im-
prove the best F-score from 0.86 to 0.87.  The C = 
10000 and γ = 0.01 combination was then applied 
to the test dataset, which was preprocessed to re-
move negation and stop words and transformed to 
a feature vector using 94 ICD-9-CM combinations 
and simple term weighting.  The predicted ICD-9-
CM classifications and confidence of the predic-
tions for each clinical free text report were output 
and later combined with other methods to optimize 
the accuracy and precision of our ICD-9-CM clas-
sifications. 

 
k-NN. The Challenge training set was used to 

build a k-NN classifier. The k-NN classification 
method works by identifying, within a labelled set, 
documents similar to the document being classi-
fied, and inferring a classification for it from the 
labels of the retrieved neighbors. 

The free text in the training data set was proc-
essed to obtain a vector-space representation of the 
patient reports.  

Several methods of obtaining this representation 
were tested: after stop words were removed, simple 
term frequency and inverse document frequency 
(IDF) weighting were applied alternatively. A 
higher weight was also given to words appearing in 
the history portion of the text (vs. impression). 
Eventually, the most efficient representation was 
obtained by using controlled vocabulary terms ex-
tracted from the free text with MetaMap.4 Further 
processing on this representation of the training 
data showed that removing negated portions of the 
free text improved the results, raising the F-score 
from 0.76 to 0.79.   

Other parameters were also assessed on the 
training data, such as the number of neighbors to 
use (2 was found to be the best vs. 5, 10 or 15) and 
the restriction of the ICD-9-CM predictions to the 
set of 94 allowed combinations. When the predic-
tion for a given document was not within the set of 
allowed 94 combinations, an allowed subset of the 
ICD-9-CM codes predicted was selected based on 
the individual scores obtained for each ICD-9-CM 
code.  

The best F-score (F = 0.79) obtained on the 
training set used the MetaMap-based representa-
                                                 
4 Note that this use of MetaMap is independent of its 
inclusion as a component of MTI. 
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tion with simple frequency counts on the text with 
negated expressions removed. ICD-9-CM predic-
tions were obtained from the nearest neighbors and 
restricted to one of the 94 allowed combinations.   

 
Pattern Matching. We developed a pattern-

matching classifier as a baseline for our more so-
phisticated classification methods. A list of all 
UMLS string representations for each of 45 codes 
(including synonyms from source vocabularies 
other than ICD-9-CM) was created as described in 
the MTI section above. The strings were then con-
verted to lower case, punctuation was removed, 
and strings containing terms unlikely to be found 
in a clinical report were pruned. For example, Ab-
domen NOS pain and Abdominal pain (finding) 
were reduced to abdominal pain. For the same rea-
sons, some of the strings were relaxed into pat-
terns. For example, it is unlikely to see PAIN 
CHEST in a chart, but very likely to find pain in 
chest. The string, therefore, was relaxed to the fol-
lowing pattern: pain.*chest. The text of the clinical 
history and the impression fields of the radiology 
reports with negated expressions removed (see 
Section 2.2) was broken up into sentences. Each 
sentence was then searched for all available pat-
terns. A corresponding code was assigned to the 
document for each matched pattern. This pattern 
matching achieved F-score = 0.79 on the training 
set. To reduce the number of codes assigned to a 
document, a check for allowed combinations was 
added as a post-processing step. The combination 
of assigned codes was looked up in the table of 
allowed codes. If not present, the codes were re-
duced to the combination of assigned codes most 
frequently occurring in the training set. This 
brought the F-score up to 0.84 on the training data. 
As the performance of this classifier was compara-
ble to other methods, we decided to include these 
results when combining the predictions of the other 
classifiers.  

2.3 Fusion of  Basic Methods: Stacking 

Experience with ad hoc retrieval tasks in the TREC 
Genomics Track has shown that combining predic-
tions of several classifiers either significantly im-
proves classification results, or at least provides 
more consistent and stable results when the train-
ing data set is small (Aronson et al., 2005). We 
therefore experimented with stacking (Ting and 
Witten, 1997), using a simple majority vote and a 

union of all assigned codes as baselines. The pre-
dictions of base classifiers described in the previ-
ous section were combined using our re-
implementation of the stacked generalization pro-
posed by Ting and Witten.  

3 Results 

Table 1 shows the results obtained for the training 
set. The best stacking results were obtained using 
predictions of all four base classifiers on the text 
with deleted negated expressions and with check-
ing for allowed combinations. We retained all final 
predictions with probability of being a valid code 
greater than 0.3. Checking for the allowed combi-
nations for the ensemble classifiers degraded the F-
score significantly. 

 
Classifier F-score 
MTI 0.83 
SVM 0.87 (x-validation) 
k-NN 0.79 (x-validation) 
Pattern Matching 0.84 
Majority 0.82 
Stacking 0.89 

 
Table 1: Training results for each classifier, the ma-

jority and stacking 
 

Since stacking produced the best F-score on the 
training corpus and is known to be more robust 
than the individual classifiers, the corresponding 
results for the test corpus were submitted to the 
Challenge submission website. The stacking results 
for the test corpus achieved an F-score of 0.85 and 
a secondary, cost-sensitive accuracy score of 0.83. 
For comparison purposes, 44 Challenge submis-
sions had a mean F-score of 0.77 with a maximum 
of 0.89. Our F-score of 0.85 falls between the 70th 
and 75th percentiles. 

4 Discussion 

It is significant that it was fairly straightforward to 
port various methods developed for ad hoc MED-
LINE citation retrieval, indexing and classification 
to the assignment of codes to clinical text. The 
modifications to MTI consisted of replacing Re-
strict to MeSH with Restrict to ICD-9-CM, training 
the Related Citations method on clinical text and 
replacing MTI’s normal post-processing with a 
much simpler version. Preprocessing the text using 
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NegEx to remove negated expressions was a fur-
ther modification of the overall approach. 

It is noteworthy that a simple pattern-matching 
method performed as well as much more sophisti-
cated methods in the effort to fuse results from 
several methods into a final outcome. This unex-
pected success might be explained by the follow-
ing limitations of the Challenge. 

Possible limitations on the extensibility of the 
current research arise from two observations: (1) 
the Challenge cases were limited to two relatively 
narrow topics, cough/fever/pneumonia and uri-
nary/kidney problems; and (2) the clinical text was 
almost error-free, a situation that would not be ex-
pected in the majority of clinical text. It is possible 
that these conditions contributed to the success of 
the pattern-matching method but also caused 
anomalous behavior, such as the fact that simple 
frequency counts provided a better representation 
than IDF for the SVM and k-NN methods. 

Finally, as a result of low confidence in the 
ICD-9-CM code assignment, no codes were as-
signed to 29 records in the test set. It is worthwhile 
to explore the causes for such null assignments. 
One of the reasons for low confidence could be the 
aggressive pruning of the text by the negation algo-
rithm. For example, after removal of negated text 
in the sample report given in section 2.1, the only 
remaining text is “13-year 2-month - old female” 
from the clinical history field; this provided no 
evidence for code assignment. Secondly, in some 
cases the original text was not sufficient for confi-
dent code assignment. For example, for the docu-
ment with clinical history “Bilateral grade 3.” and 
impression “Interval growth of normal appearing 
Kidneys”, no code was assigned by the SVM, k-
NN, or pattern-matching classifiers. Code 593.70 
corresponding to the UMLS concept Vesicouret-
eral reflux with reflux nephropathy, unspecified or 
without reflux nephropathy was assigned by MTI 
with a very low confidence, which was not suffi-
cient for the final assignment of the code. The third 
reason for assigning no code to a document was 
the wide range of assignments provided by the 
base classifiers. For example, for the following 
document: “CLINICAL_HISTORY: 3-year - old 
male with history of left ureteropelvic and uret-
erovesical obstruction. Status post left pyeloplasty 
and left ureteral reimplantation. IMPRESSION: 1. 
Stable appearance and degree of hydronephrosis 
involving the left kidney. Stable urothelial thicken-

ing. 2. Interval growth of kidneys, left greater than 
right. 3. Normal appearance of the right kidney 
with interval resolution of right urothelial thicken-
ing.” MTI assigned codes 593.89 Other specified 
disorders of kidney and ureter and 591 Hy-
dronephrosis. Codes 593.70 Vesicoureteral reflux 
with reflux nephropathy, unspecified or without 
reflux nephropathy and 753.3 Double kidney with 
double pelvis were assigned by the k-NN classifier. 
Pattern matching resulted in assignment of code 
591 with fairly low confidence. No code was as-
signed to this document by the SVM classifier. 
Despite failing to assign codes to these 29 records, 
the conservative approach (using threshold) re-
sulted in better performance, achieving F-score 
0.85 compared to F-score 0.80 when all 1,634 
codes assigned by the base classifiers were used. 

5 Conclusion 

We are left with two conclusions. First, this re-
search confirms that combining several comple-
mentary methods for accomplishing tasks, ranging 
from ad hoc retrieval to categorization, produces 
results that are better and more stable than the re-
sults for the contributing methods. Furthermore, 
we have shown that the basic methods employing 
domain knowledge and advanced statistical algo-
rithms are applicable to clinical text without sig-
nificant modification. Second, although there are 
some limitations of the current Challenge test col-
lection of clinical text, we appreciate the efforts of 
the Challenge organizers in the creation of a test 
collection of clinical text. This collection provides 
a unique opportunity to apply existing methods to a 
new and important domain. 
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Appendix  
A sample of the input to NegEx for dictionary generation:  
 
C0002390 pneumonitis, allergic interstitial 
C0002390 allergic interstitial pneumonitis, nos 
C0002390 extrinsic allergic bronchiolo alveolitis 
C0002390 extrinsic allergic bronchiolo alveolitis, nos 
C0002390 hypersensitivity pneumonia 
C0002390 hypersensitivity pneumonia, nos 
C0002390 eaa  extrinsic allergic alveolitis 
C0002390 allergic extrinsic alveolitis nos (disorder) 
C0002390 extrinsic allergic alveolitis (disorder) 
C0002390 hypersensitivity pneumonitis nos (disorder) 

 
A sample of the dictionary generated by NegEx for later use in detecting negated expressions:  
 
C0002098 hypersensitivity granuloma (morphologic abnormality 
C0151726 hypersensitivity injection site 
C0020517 hypersensitivity nos 
C0429891 hypersensitivity observations 
C0002390 hypersensitivity pneumonia 
C0002390 hypersensitivity pneumonia, nos 
C0002390 hypersensitivity pneumonitides 
C0005592 hypersensitivity pneumonitides, avian 
C0002390 hypersensitivity pneumonitis 
C0182792 hypersensitivity pneumonitis antibody determination re-
agents 


